Joint Confidence Regions

نویسندگان

  • Abdi, M. Higher education copmplex of bam
  • Yahyaee, Hamed
چکیده مقاله:

Confidence intervals are one of the most important topics in mathematical statistics which are related to statistical hypothesis tests. In a confidence interval, the aim is that to find a random interval that coverage the unknown parameter with high probability. Confidence intervals and its different forms have been extensively discussed in standard statistical books. Since the most of statistical distributions have more than one parameter, so joint confidence regions are more important than confidence intervals. In this paper, we discuss joint confidence regions. Some examples are given for illustration purposes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh Confidence Regions based on Record Data

This paper presents exact joint confidence regions for the parameters of the Rayleigh distribution based on record data. By providing some appropriate pivotal quantities, we construct several joint confidence regions for the Rayleigh parameters. These joint confidence regions are useful for constructing confidence regions for functions of the unknown parameters. Applications of the joint confid...

متن کامل

Confidence Regions for Barcodes

The results of [3] suggest a way to sort which barcode intervals correctly belong to the underlying manifold, M , and which can be regarded as topological noise. In particular, when barcodes are computed using sublevel sets of their distance function (see eq 12), all of the barcodes that start later than a linear function of W2(F̂n, F ) can be assumed to correctly reflect the betti numbers of M ...

متن کامل

Confidence regions for level sets

This paper discusses a universal approach to the construction of confidence regions for level sets {h(x) ≥ 0} ⊂ Rd of a function h of interest. The proposed construction is based on a plug-in estimate of the level sets using an appropriate estimate �hn of h. The approach provides finite sample upper and lower confidence limits. This leads to generic conditions under which the constructed confid...

متن کامل

Confidence Regions, Regularization and Non-Parametric Regression

In this paper we offer a unified approach to the problem of nonparametric regression on the unit interval. It is based on a universal, honest and non-asymptotic confidence region An which is defined by a set of linear inequalities involving the values of the functions at the design points. Interest will typically centre on certain simplest functions in An where simplicity can be defined in term...

متن کامل

CONFIDENCE REGIONS FOR TIlE PARAMETERS OF A

Three methods in common use for finding confidence regions for the parameters of a nonlinear regression model are studied. These are the lack of fit method, the linearization method, and the maximum likelihood method. The objective is to determine which of the three methods is the preferred choice in applications. The conclusion is that the linearization method has the best structural character...

متن کامل

Global confidence regions in parametric shape estimation

We introduce confidence region techniques for analyzing and visualizing the performance of two-dimensional parametric shape estimators. Assuming an asymptotically normal and efficient estimator for a finite parameterization of the object boundary, Cramér-Rao bounds are used to define a confidence region, centered around the true boundary. Computation of the probability that an entire boundary e...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 20  شماره 1

صفحات  11- 19

تاریخ انتشار 2015-04

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023